Bilde av Myrvoll-Nilsen, Eirik
Bilde av Myrvoll-Nilsen, Eirik
Department of Mathematics and Statistics eirik.myrvoll-nilsen@uit.no +4777645724 Tromsø You can find me here

Eirik Myrvoll-Nilsen



  • Luc, Eirik, Christian L. E. :
    Assessing AMOC stability using a Bayesian nested time-dependent autoregressive model
    Nonlinear processes in geophysics 20. Oktober 2025 DOI
  • Eirik, Luc, Martin :
    Bayesian analysis of early warning signals using a time-dependent model
    Earth System Dynamics (ESD) 24. September 2025 DOI
  • Iver, Steffen Aagaard, Samuel, Fred, Miguel Angel Tejedor, Eirik :
    Quantifying uncertainty in foraminifera classification: How deep learning methods compare to human experts
    Artificial Intelligence in Geosciences 2025 DOI / ARKIV
  • Fred, Eirik, Lasse :
    Comments on: Data integration via analysis of subspaces (DIVAS)
    Test - An Official Journal of the Spanish Society of Statistics and Operations Research 2024 DOI / ARKIV
  • Eirik, Keno, Martin Wibe, Niklas :
    Comprehensive uncertainty estimation of the timing of Greenland warmings in the Greenland ice core records
    Climate of the Past 2022 DOI / ARKIV
  • Eirik, Sigrunn Holbek, Hege-Beate, Håvard, Martin Wibe :
    Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling
    Earth System Dynamics (ESD) 2020 DOI / ARKIV
  • Eirik, Hege-Beate, Sigrunn Holbek, Martin wibe :
    Warming trends and long-range dependent climate variability since year 1900: A Bayesian approach
    Frontiers in Earth Science 2019 DOI / ARKIV
  • Martin wibe, Hege-Beate, Eirik, Kristoffer, Sigrunn Holbek :
    Emergent scale invariance and climate sensitivity
    Climate 2018 DOI / ARKIV
  • Sigrunn Holbek, Eirik, Håvard :
    An approximate fractional Gaussian noise model with O(n) computational cost
    Statistics and computing 2018 DOI
  • Eirik :
    Discussion of: Data Integration Via Analysis of Subspaces (DIVAS)
    28. März 2025
  • Iver, Fred, Steffen Aagaard, Eirik, Samuel Ortega, Miguel Angel Tejedor :
    Are humans an AI uncertain about the same things?
    2024
  • Steffen Aagaard, Eirik, Iver, Fred, Stamatia, Juho et al.:
    Detection and identification of environmental faunal proxies in digital images and video footage from northern Norwegian fjords and coastal waters using deep learning object detection algorithms
    2024
  • Eirik, Steffen, Stamatia, Thomas Haugland, Iver, Morten et al.:
    Automated classification of microscopic foraminifera
    2023
  • Eirik, Steffen, Stamatia, Thomas Haugland, Iver, Morten et al.:
    Automating object detection and classification of foraminifera
    2023
  • Steffen Aagaard, Eirik, Stamatia, Thomas Haugland, Iver, Morten et al.:
    Automated image/video classification and object detection of foraminifera
    2023
  • Eirik, Keno, Niklas :
    Synchronization of layer-counted archives using a statistical age-depth model
    2022
  • Eirik, Niklas, Martin Wibe, Keno :
    Quantification of the dating uncertainties in Greenland ice core records
    2021
  • Eirik, Niklas, Martin Wibe, Keno :
    A statistical model for dating uncertainties in Greenland ice core records
    2021
  • Eirik, Sigrunn Holbek :
    Efficient Bayesian analysis of long memory processes applied to climate
    UiT Norges arktiske universitet 22. Mai 2020
  • Eirik, Sigrunn Holbek, Hege-Beate, Martin wibe :
    A statistical model for global surface temperature response to radiative forcing with long-range dependent noise
    2019
  • Sigrunn Holbek, Eirik, Martin wibe, Hege-Beate, Håvard :
    Bayesian analysis of temperature series accounting for long-range dependence and climate forcing
    2019
  • Eirik, Sigrunn Holbek :
    Incorporating long-range dependency into Bayesian spatio-temporal modeling
    2019
  • Eirik, Sigrunn Holbek, Martin wibe, Hege-Beate, Håvard :
    Modeling global surface temperatures in terms of climate forcing and a long-memory stochastic process
    2018
  • Eirik, Sigrunn Holbek, Martin wibe, Hege-Beate, Håvard :
    Modeling global surface temperatures in terms of climate forcing and a long-memory stochastic process
    2018
  • Sigrunn Holbek, Eirik, Håvard :
    An approximate fractional Gaussian noise model with O(n) computational cost
    arXiv.org 2017 FULLTEKST
  • Eirik, Sigrunn Holbek, Håvard :
    Computationally efficient Bayesian approximation of fractional Gaussian noise
    2017

  • The 50 latest publications is shown on this page. See all publications in Cristin here →



    Realfagbygget A214


    Click for bigger map