Luc,
Eirik,
Christian L. E.
:
Assessing AMOC stability using a Bayesian nested time-dependent autoregressive model
Nonlinear processes in geophysics 20. Oktober 2025
DOI
Eirik,
Luc,
Martin
:
Bayesian analysis of early warning signals using a time-dependent model
Earth System Dynamics (ESD) 24. September 2025
DOI
Iver,
Steffen Aagaard,
Samuel,
Fred,
Miguel Angel Tejedor,
Eirik
:
Quantifying uncertainty in foraminifera classification: How deep learning methods compare to human experts
Artificial Intelligence in Geosciences 2025
DOI /
ARKIV
Fred,
Eirik,
Lasse
:
Comments on: Data integration via analysis of subspaces (DIVAS)
Test - An Official Journal of the Spanish Society of Statistics and Operations Research 2024
DOI /
ARKIV
Eirik,
Keno,
Martin Wibe,
Niklas
:
Comprehensive uncertainty estimation of the timing of Greenland warmings in the Greenland ice core records
Eirik,
Sigrunn Holbek,
Hege-Beate,
Håvard,
Martin Wibe
:
Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling
Earth System Dynamics (ESD) 2020
DOI /
ARKIV
Eirik,
Hege-Beate,
Sigrunn Holbek,
Martin wibe
:
Warming trends and long-range dependent climate variability since year 1900: A Bayesian approach
Frontiers in Earth Science 2019
DOI /
ARKIV
Martin wibe,
Hege-Beate,
Eirik,
Kristoffer,
Sigrunn Holbek
:
Emergent scale invariance and climate sensitivity
Sigrunn Holbek,
Eirik,
Håvard
:
An approximate fractional Gaussian noise model with O(n) computational cost
Statistics and computing 2018
DOI
Eirik
:
Discussion of: Data Integration Via Analysis of Subspaces (DIVAS)
28. März 2025
Iver,
Fred,
Steffen Aagaard,
Eirik,
Samuel Ortega,
Miguel Angel Tejedor
:
Are humans an AI uncertain about the same things?
2024
Steffen Aagaard,
Eirik,
Iver,
Fred,
Stamatia,
Juho
et al.:
Detection and identification of environmental faunal proxies in digital images and video footage from northern Norwegian fjords and coastal waters using deep learning object detection algorithms
2024
Eirik,
Steffen,
Stamatia,
Thomas Haugland,
Iver,
Morten
et al.:
Automated classification of microscopic foraminifera
2023
Eirik,
Steffen,
Stamatia,
Thomas Haugland,
Iver,
Morten
et al.:
Automating object detection and classification of foraminifera
2023
Steffen Aagaard,
Eirik,
Stamatia,
Thomas Haugland,
Iver,
Morten
et al.:
Automated image/video classification and object detection of foraminifera
2023
Eirik,
Keno,
Niklas
:
Synchronization of layer-counted archives using a statistical age-depth model
2022
Eirik,
Niklas,
Martin Wibe,
Keno
:
Quantification of the dating uncertainties in Greenland ice core records
2021
Eirik,
Niklas,
Martin Wibe,
Keno
:
A statistical model for dating uncertainties in Greenland ice core records
2021
Eirik,
Sigrunn Holbek
:
Efficient Bayesian analysis of long memory processes applied to climate
UiT Norges arktiske universitet 22. Mai 2020
Eirik,
Sigrunn Holbek,
Hege-Beate,
Martin wibe
:
A statistical model for global surface temperature response to radiative forcing with long-range dependent noise
2019
Sigrunn Holbek,
Eirik,
Martin wibe,
Hege-Beate,
Håvard
:
Bayesian analysis of temperature series accounting for long-range dependence and climate forcing
2019
Eirik,
Sigrunn Holbek
:
Incorporating long-range dependency into Bayesian spatio-temporal modeling
2019
Eirik,
Sigrunn Holbek,
Martin wibe,
Hege-Beate,
Håvard
:
Modeling global surface temperatures in terms of climate forcing and a long-memory stochastic process
2018
Eirik,
Sigrunn Holbek,
Martin wibe,
Hege-Beate,
Håvard
:
Modeling global surface temperatures in terms of climate forcing and a long-memory stochastic process
2018
Sigrunn Holbek,
Eirik,
Håvard
:
An approximate fractional Gaussian noise model with O(n) computational cost
Eirik,
Sigrunn Holbek,
Håvard
:
Computationally efficient Bayesian approximation of fractional Gaussian noise
2017